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A validation procedure is presented that satisfies the FDA requirements of accuracy (including pre-
cision repeatability), sensitivity, linearity, dynamic range, and homoscedasticity, all with a single set
of data. The procedure utilizes the corrigible error correction (CEC) technique comprised of three
response curves—standard, Youden one-sample, and method of standard additions (MOSA) plots,
from a total of 15 to 18 X, Y data pairs. For the bias component of accuracy, the systematic bias error
of the method is quantitatively separated into its constant and proportional error components. The
overall constant systematic error is further separated into the system (blank) and analyte-matrix
(sample) components. The CEC data also provide an internal, i.e., in situ corrected assay for the
sample for comparison with alternative method data. Statistical diagnostic tests are used for the final
evaluation of the method acceptability, specifically in deciding whether or not the systematic error
indicated requires a root source search for its removal or is simply a calibration constant of the
method.

KEY WORDS: accuracy; method validation; systematic error; statistical diagnostic tests; corrigible

error correction technique.

INTRODUCTION

In a method validation program, there is a variety of
intra- and interlaboratory analytical procedures that are ca-
pable of detecting systematic (bias) error. A discussion of
these procedures and the statistical diagnostic tests that are
used in the evaluation of the data produced is available (1).
Only one of these procedures, the corrigible error correction
(CEC) (2,3) technique, not only is capable of detecting bias
error but also is able to characterize it quantitatively into its
constant and proportional error components and at the same
time yield a corrected assay result on the actual sample un-
der analysis. The CEC technique, then, has been selected for
examination of some of the chemometrics involved.

Rather than a review of all the chemometric tests that
are available and useful in a validation program, which
would be beyond the scope of this paper, we emphasize only
those statistical tests and considerations which, although not
new to statisticians, may be new to most practicing pharma-
ceutical analysts. With these, it is our intent to demonstrate
the power of chemometrics as an aid in some of the decision-
making processes that are involved throughout a validation
program. Finally, we will make the point that a method val-
idation program based on the CEC technique provides all of
the required new drug application (NDA) documentation
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data and does so more efficiently and more effectively than
do the present conventional validation approaches.

STATISTICAL TESTS

Simple Linear Regression Statistics

One of the requisites in the use of simple linear regres-
sion analysis is that a simple linear model, namely, ¥ = mX
+ b, must be shown to be applicable. This requires that the
data pass an appropriate linearity test and also that the data
be homoscedastic (constant variance over the range). Tests
for both of these requirements are given below. Two of the
various statistics that come out of a simple linear regression
analysis are either underused or perhaps unknown to ana-
Iytical chemists. These are based on the intercept and the
standard error of estimate, s,,., (4,5).

Relative Intercept. The use of the intercept as a param-
eter of the line for analytical calculations is, of course, basic
to analytical practice. The calculation of the confidence in-
terval for the intercept at some selected confidence level to
compare, for example, against an expected value of zero is
also a well-known significance test. If zero is included in the
confidence interval, the intercept is statistically not signifi-
cantly different from zero. The analyst however, does not
equate it to zero but still utilizes the actual value as a cali-
bration constant. There is no inference of a bias error in the
calibration or sample response system. However, if the in-
tercept value is statistically significantly different from zero,
then such an inference can be made and there is justification
for a first-principles search for the root source of the bias
error.
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Not so familiar to analytical chemists, however, is the
relative intercept statistic, /Y (5). This statistic has basic
significance to analytical chemists but is of no concern or
interest to statisticians. Their interest in the intercept is in its
confidence interval, as already mentioned. Analytically,
however, the intercept as a percentage of the response signal
is of value to the analyst in judging the degree of error re-
sulting from the bias especially when considered simulta-
neously with the relative variation statistic (Rel Var), dis-
cussed below. [Concepts and applications of the relative in-
tercept have been discussed (5).]

Relative Variation (Rel Var). This statistic, s,.,/Y is the
standard error of estimate as a percentage of the mean (4,5)
and may be used in at least two ways, if the data pass an
appropriate linearity test as demonstrated in Appendix 1. (If
the data cannot pass a linearity test, simple linear regression
analysis cannot be used. This situation is beyond the scope
of this paper.)

The first usage involves its characteristic as a precision
measure. If its magnitude is acceptable when assessed
against the precision required in the proposed method, then
the linear dynamic range (that has first been tested and
passed) is acceptable. For example, if the Rel Var for the
Youden one-sample plot (2,3) were 0.80% and a final method
precision of less than 1% were the goal, then the response
curve procedure would be acceptable since the Youden one-
sample plot incorporates all of the procedural steps except
for the Kaiser inverse operation (6) via the standard re-
sponse curve. [There is some precision deterioration in this
operation as Mitchell and Garden (7) have pointed out.]

However, if the magnitude of the Rel Var is unaccept-
able, the linear dynamic range should be shortened, drop-
ping the high and low values, if necessary and rerunning the
new range span with an adequate number of X, Y data pairs.
(This procedure of shortening the usable range is based
partly on our observations that the Rel Var decreases as the
X,Y centrum point is approached. We have been unable to
produce a rigorous statistical explanation of this behavior.
Also, any undetected curvilinearity in the line decreases as
the range is shortened, with a resultant increase in preci-
sion). If the Rel Var of the new redetermined linear regres-
sion is still unacceptable, the process is repeated until an
acceptable value of the Rel Var is obtained provided that the
remaining linear range is still analytically useful. If an ana-
lytically useful range with an acceptable Rel Var cannot be
found, then a first principles restudy of the precision vari-
ables in the methodology is required. If the search does not
uncover a root source of the variability or if, after the
method has been revised, the rerun of the regression still
results in an unacceptable magnitude of the Rel Var, the
response curve procedure must be abandoned.

The second usage of the Rel Var statistic is to answer
the question, Is the linear dynamic range homoscedastic?
Examination of Fig. 1 shows that the Rel Var is analogous to
the RSD precision measure. After testing and accepting lin-
earity, the postulation is then made that if the linear dynamic
range is homoscedastic, then ¢® = ¢%,, (4). Anillustration is
shown in the data in Table III. The computation is shown in
Appendix 2 and since the assumption of homoscedasticity is
not rejected for the dynamic range, then simple linear re-
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Fig. 1. Response curve precisions: Rel Var (line) and RSD (single
level).

gression analysis may be used. (If the range were shown to
be heteroscedastic, then weighted regression analysis would
have to be used, a situation beyond the scope of this paper.)

Corrigible Error Correction (CEC) Technique Concepts and
Statistical Tests

There are three response curves utilized in the CEC
technique, each of which is subjected to simple linear regres-
sion analysis. These are shown in Fig. 2 as the standard plot,
the Youden one-sample plot, and the method of standard
additions (MOSA) plot. In each, the slopes are, respectively,
mg, my, and my,, with the intercepts, respectively, SB, TYB
and A. The significance of each of these mathematical pa-
rameters has been discussed (2,3). One of the most impor-
tant concepts that has been proven (2,3) is that the overall
functionality of the MOSA is as shown in Fig. 2B, where the
relationship is ¥ = myW, + TYB, a relationship wherein
the MOSA is simply an extension of the Youden one-sample
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Fig. 2. Response curves in the corrigible error correction technique.
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curve. This relationship shows that in the MOSA, the un-
spiked sample analyte signal response S’ is equal to the
MOSA intercept, A, and that for a correct MOSA calcula-
tion, the true sample blank, i.e., the total Youden blank
(TYB), must be subtracted.

Another important concept is the term expressed in the
relationship, TYB — SB = YB. Since the TYB is the inter-
cept of a response curve in a matrix, while the SB is the
intercept of a matrixless standard response curve, the differ-
ence between the two intercepts, namely, the Youden blank
(YB), is statistically equivalent to zero, if there is no ana-
lyte-matrix interaction effect. It is important to note that
each intercept, SB and TYB, can be individually tested for
equivalence to zero by a calculation of its respective confi-
dence interval at the desired confidence level. If both inter-
cept confidence intervals include the value of zero, then the
values of the SB and TYB are not statistically different from
zero and the conclusion can be drawn that the intercepts are
simply calibration constants to be used in assay calculations.
More importantly, however, is the case where either the SB
or the TYB, or both, may be statistically different from zero.
In this case, it is the difference between the intercepts that
must be statistically tested against zero. A calculation of the
confidence interval of the difference is made. If the confi-
dence interval includes the value of zero, then the SB and
TYB are simply calibration constants. If the confidence in-
terval does not include the value of zero, a constant system-
atic error in the sample system is indicated that can justify a
first-principles search for the root source of the error. The
significance test for the difference between two intercepts is
shown in Appendix 3.

Finally, another concept is the ratio of the MOSA slope
to that of the standard slope, m,/m,, defined as the propor-
tional error factor, P. The value of P is equal to unity unless
the matrix causes an interaction effect on the MOSA slope.
If the value of P is not unity, a statistical significance test is
again needed to decide when the value is significantly differ-
ent from unity. If the slope ratio confidence interval includes
the value of unity, then the value of P is simply a calibration
constant. If it does not, a proportional systematic error is
indicated that can justify a first-principles search for the root
source of the error. This significance test is shown in Ap-
pendix 4.

EXPERIMENTAL

A steroid cream dosage formulation was assayed for the
active steroid by an HPLC method using a single extraction
procedure for the removal of matrix components and other
interferents and measuring the peak height responses (PH) of
the steroid analyte.

For the standard calibration curve-based procedure, the
respective weighed samples were taken up in solvent, the
solutions extracted with a specified volume of immiscible
solvent, and the separated aqueous layer diluted to volume.
Standard solutions were prepared in the same manner except
that the extraction step was omitted, the solutions being di-
luted directly to volume.

In the MOSA procedure, for the incremental spike so-
lutions, each of the unspiked sample solutions, W_, of 7.432
+ 0.015 mg/ml concentration (£ 0.2% variation in the g
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sample weight) were treated with an appropriate volume of
standard solution before extraction and completion of the
procedure above. The data are shown in Table 1.

RESULTS

In Table I, the X,Y data pairs for the respective re-
sponse curves are given, each with pertinent parameters
from simple linear regression analysis, the intercept and
slope, and their respective standard (deviations) errors.
These statistics are those needed for the calculation of the
confidence interval for the difference in the Youden one-
sample and standard curve intercepts, and the MOSA/
standard curve slope ratio as mentioned above, as shown in
Appendices 3 and 4.

In Table II, standard curve assay results are calculated
for the various Youden one-sample range points, uncor-
rected for the revealed total Youden blank, TYB, and cor-
rected for the TYB using the formulae in the footnotes to
Table II, as given in reference 8, Fig. 2, Code A3.2.1, for the
uncorrected value and in reference 2, Fig. 1, I1, for the cor-
rected value. Similarly, the uncorrected and corrected
MOSA values, respectively, utilize Code A5.2 in Ref. 8, Fig.
2, and formula IV in Ref. 2, Fig. 1. The CEC statistics (2,3)
are also shown in Table II except that the relative total av-
erage bias (Rel TAB) is herewith defined as [(uncorrected -
corrected) / corrected] (100).

The data in Tables I and II furnish the method docu-
mentation information required by the regulatory agencies
(e.g., the FDA for an NDA) ascertaining to the accuracy
method performance characteristic that a method validation
procedure must provide.

DISCUSSION

The regulatory requirements for the validation of a new
method as part of a new drug application are set out in the

Table I. Determination of Steroid in a Steroid Cream by an HPLC

Method
Standard Youden MOSA
curve? curve? curvea®?®
X Y X Y X Y
W), S, w,), S, (W), (A
pg/ml PH mg sple/ml PH ng/ml PH
30.01 0.2296 2.680 0.2274 0.00 0.6231
60.01 0.4578 5.252 0.4419 10.00 0.7094
80.02 0.6067 7.432 0.6231 30.01 0.8672
100.03 0.7487 9.908 0.8405 50.01 1.0377
125.03 0.9527 11.940 1.0185 70.02 1.2002
150.03 1.1502 13.970 1.1802
ng=6 ny =6 ny =95
b, = —0.00373 by = —-0.00287 by = 0.6241
sps = 0.007582 spy = 0.005047
mg = 0.007646 my, = 0.008231
Sms = 0.00007643 smm = 0.00005443

¢ Dilution volume was 250 ml; dilution factor, 1; symbols for axes
are as used in Fig. 2.
& Sample solution concentration for spiking, W, ,,, was 7.432 mg/ml.
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Table II. HPLC Method Assay Results by Standard Curve and
MOSA Procedures

mg/g
Standard curve MOSA curve
mg sple/ml Uncorr.? Corr.? Uncorr.© Corr.?
2.680 11.279 10.439
5.252 11.097 10.289
7.432 11.031 10.233 10.20 10.25
9.908 11.144 10.341
11.940 11.197 10.393
13.970 11.084 10.289
Mean 11.14 10.33
RSD 0.80% 0.73%
Rel Var —_ 0.71%
CEC statistics
Rel TYB —_ —0.40%
Rel YB — 0.12%
P —_ 1.08
Rel TAB — 7.84%

“mg/g = (PH — SB)/(m,) (W,).

® mglg = (PH — TYB)/(m,) (W,) (P).
°mglg = PH/(my) (W, ).

“mg/g = (PH — TYB)/(my) (W,,).

Good Manufacturing Practices (GMPs) (9). The definitions
and data requirements for the method performance charac-
teristics, accuracy, sensitivity, specificity, and reproducibil-
ity [and ruggedness (10)] that are called for in the regula-
tions, which attest to the reliability of the method and which
have been generally accepted by analytical chemists in the
pharmaceutical and chemical industries, are well-known
(11,12).

The CEC technique addresses only the accuracy
method performance characteristic. Although the PMA
guidelines (12) and GMPs (9) use the term accuracy as syn-
onymous to the term bias, inaccuracy is now generally ac-
cepted as meaning total error, i.e., a composite of both bias
and imprecision (Refs. 1-9 in Ref. 1). The other method
performance characteristics all involve individually designed
experiments of which the PMA guidelines are representa-
tive. The exception is the sensitivity criterion that is omitted
in the PMA guidelines. In its place are the limit of detection
and limit of quantitation criteria that are only requirements
for methods in Category II (12), that is, low-level determi-
nations of impurities or degradants. There is no problem
posed, however, in meeting the GMP sensitivity criterion
since its generally accepted definition is that it is provided by
the slope of the analytical response curve, a datum that all
methodology provides (11). In Table I, it is m, = 0.007646.

The essence of the CEC technique is that the entire
accuracy criterion is met by a single set of data (Table II), 17
data points in all. The precision component of accuracy is
provided both by the Rel Var statistic discussed in the pre-
ceding section (0.71%, Table II) and by the RSD of the
Youden one-sample range points (0.73%, Table II). These
are, of course, the precision repeatability criterion since the
data are within a set. This is, however, currently accepted
analytical practice and it should be noted that the PMA
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guidelines do not explicitly call for the reproducibility pre-
cision criterion. To provide a reproducibility precision esti-
mate, the data set need only be repeated on another day and
the individual RSD estimates statistically pooled.

The bias components of accuracy are provided by the
statistics in Table II: the total constant error in the overall
sample system is the TYB and the constant error from the
analyte—matrix interaction is the YB. The proportional error
is P and since an assay corrected for these systematic errors
is provided, an overall net systematic error, the Rel TAB,
can be calculated. The Rel TAB can be mostly one-sided, as
in this example where almost all the bias error is propor-
tional in nature. In other cases, it can be mostly constant
error, and in others, it can be almost zero when the errors
arbitrarily cancel each other. In the latter case, in conven-
tional validation practice, systematic error can remain unde-
tected in an apparently bias free method, a situation that can
cause otherwise unexplainable aberrant results even when
obtained under normally variable laboratory conditions.

In the CEC validation procedure, an appropriate linear-
ity test has been included which some or even many analyt-
ical chemists may reject as redundant or unnecessary since
the correlation coefficient, r, is, in fact, acceptable to the
FDA for this purpose. The correlation coefficient and its
related coefficient of determination, R?, are not indicators of
the linearity of a functional response curve and this has been
recognized for some time (7,13,14). A high degree of corre-
lation in a functional relationship does not necessarily mean
that a straight line relationship exists. Thus, a perfectly cor-
related straight line has an r value of =1 but so does a per-
fectly correlated curvilinear function. In analyses where a
straight-line calibration curve is based on a physicochemical
relationship such as the Beer-Lambert law, the redundancy
is in the citation of r as proof of the linearity of an already
established function.

A more appropriate linearity test for data as represented
in the response curves in Table I is an F test for lack of fit
utilizing replicated X,Y data pairs along the response curve
(7). This option is somewhat unsatisfactory because of the
replication requirement, whereas the only somewhat inferior
but adequate option (7) selected in Appendix 1 requires
none. A signs test for linearity based on residuals as sug-
gested by Thompson (15) requires a minimum of 19 or 20
data pairs for a conclusive estimate, a somewhat impractical
criterion for a response curve. However, a residuals plot
interpreted visually can be of value in assessing linearity
(16).

In summary, tests are provided that qualify the use of
simple linear regression statistics and help select the span of
the linear dynamic range, which will provide acceptable pre-
cision for the intended usage. The intercepts of the standard
and Youden one-sample curves and the MOSA to a standard
curve slope ratio can be statistically tested to determine
whether or not these regression line parameters are simply
calibration constants or whether they indicate an underlying
root source of bias which should be sought for and elimi-
nated. The bias component of the accuracy criterion is sep-
arated quantitatively into its constant and proportional error
components, a unique capability of the CEC validation pro-
cedure. This capability furnishes additional assistance in de-
cisions concerning systematic error root sources searches.
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The use of the systematic error constants to correct, in situ,
the assay is especially helpful when comparing alternate
method results. Thus, the data set provides a more effective
diagnosis of the overall method performance than is possible
with conventional alternative validation approaches with
less data.

APPENDIX 1: LINEARITY TEST

Premise

Y = b, + b,X + bX?

— quadratic term

Test the value of b, from fitted data; if it differs significantly
from zero, nonlinearity is demonstrated (at the confidence
level chosen).

Procedure

1. Input X,Y data into
Part A: a polynomial regression program such as SAS
[Statistics Analysis Systems (17)] or
Part B: the manual algorithms provided by Burnett (18)
and the authors (19).
2. From the quadratic parameter b, and its standard error,
2, as obtained from either Part A or Part B, calculate the
experimental ¢:

t = byls,,.

3. Obtain the tabular ¢ for n — 3 df at the confidence level
selected [usually 95% (i.e., a = 0.05)].

Interpretation

If calculated (experimental) z > tabular ¢, then b, is
indicated to be significantly different from zero and the qua-
dratic model equation is required, i.e., nonlinearity is dem-
onstrated.

Note. Martin (20) points out that the same conclusion
is derived from an appropriate F test.

Example
Use the X, Y Youden curve data pairs in Table 1.

Part A: the SAS program direct readout provides the
experimental ¢ value:
experimental £ = 0.17
tabular ¢, _,/2yx—3 ap»

n==6, a = 0.05

to.975, 3ar = 3-18
Part B: manual algorithms
i=12,3...,n
Make the calculations using the following algo-
rithms, in order.
1. Calculate the b,, b,, and b, parameters.

F = [3(X; - D1 [2(XF - 3(X)/n)?
G = 3[X; - 3XDn] (Y: - D)

H = 3(X; - X) [X] - 2(XD/n]

Cardone, Willavize, and Lacy

J=3X;-D ;- D

, o BO¢ ~ SV - HG

! F — H?
[(3(X; - X)’)G — HJ
br = F- I
by = Y ~ bX — by[3(X?)/n)

2. ?1 =b, + biX; + bzzY,2

3 Sz - E(Yl - Ai)2
) n-—3
4. ms3 = C - BZ/A
A2E? — 2ABDE + B*D*|7!
A’B — AD?
where
A=n=6, B=3X, C=23X
D=3X, E=3X;

5. Calculation of s,, can now be made from the
following relationship:

_ 3
spp = \/ $°mz3

Conclusion

The values of b, and s,, from either Part A or Part B are
0.0000325 and 0.000189, giving an experimental ¢ of 0.17.
Since the experimental ¢ is less than the tabular ¢ (Part A
above), then the b, quadratic parameter is not indicated to be
significantly different from zero, therefore we conclude that
the quadratic equation is not required.

Note. When b, = 0 by the above test, the parameters
for b, and b, from the quadratic model are not used. Use the
parameters from the simple linear regression model.

Comment

The SAS program in Part A is very sophisticated and is
used by statisticians for many purposes. The polynominal
regression algorithms in Part B are specifically for the pur-
pose of the test described. Although the manual calculations
using the algorithms are very tedious, with a personal com-
puter and a program, the ¢ test described could be no more
complicated, in effect, than a standard deviation calculation
now routinely made with an electronic calculator, simply the
input of the X,Y data pairs.

APPENDIX 2: HOMOSCEDASTICITY TEST

Question: Iss = s,..?

o (Is the standard deviation

equivalent to the std-
err-est?
(null hypothesis)

F test

Compute experimental value (data from Table III)
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Table III. Homoscedasticity Test
Rel Var® RSD
X, Y, Samples: 2.225g = 1 mg
w, Sy (8.90 mg sple/mi)
(mg sple/mi) (PH) Y PH responses
2.680 0.2274 0.7496 0.7572 0.7484
5.252 0.4419 0.7562 0.7536 0.7547
7.432 0.6231 0.7581 0.7510
9.908 0.8405
11.940 1.0185
13.970 1.1802
X 8.530 _
Y 0.7219 70.7536
n =6 n, = 8
sy . = 0.005094 s = 0.003605
Rel Var = 0.71% RSD = 0.48%

¢ Data from Table I (Youden curve).

Fexpt = si-xjsz
0.005094%/0.0036052
= 2.00

i

Obtain the two-tailed tabular ¢ statistic at the confidence
level, e.g., 95% (o = 0.05).

Fiab(1-e).(df1.4f) dfj=n-2
df2 =n-—-1

Fo.975,4,7d0)=5.52

Since Fyp, < Fy,, we cannot reject the null hypothesis. We
conclude that the variances are not significantly different,
therefore, there is no evidence that the range is not homo-

scedastic.

APPENDIX 3: SIGNIFICANCE TEST FOR DIFFERENCE
BETWEEN INTERCEPTS (21)

YB = TYB — SB
bY - bs

CLyg = (by — b) * 1, Vs2y + st

where the by, b, 5.y, and s, terms are those provided by
the simple linear regression data in Table 1.

t, is the two-tailed critical value from the Student’s ¢
distribution with g degrees of freedom calculated as follows:

I

C = spxl(siy + st

g = UN[C%ny —2) + (1 = CVln, — 2)]
g = 6.963 (~7)

t, at the 95% confidence level, « = 0.05
ot —os2yrar = 2.365

1l

then
C.I.yg = 0.00086 = 0.02154
or

—0.0207 to 0.0224

Note. There are several approximate solutions to ¢, in
the statistical literature.

APPENDIX 4: SIGNIFICANCE TEST FOR RATIO OF
SLOPES, P

P = my/m,
The confidence interval is

Clp =P = (tIm)ls2y + P52,
— (P52, s2n)/m2
(A - (352)/im?)

In the simplified Fieller’s theorem equation (22) above, all
covariance terms are omitted for this case since the regres-
sion functions are totally independent.

The slopes, m, and m,,, and the standard error of the
slopes, s, and s, are those provided by the simple linear
regression analysis data in Table 1.

t is the two-tailed Student’s value for the df as follows:

df = (n, = 2) + (nyg — 2)
=4+3

Tabular ¢ for o« = 0.05

1l

1 —aryras = 2.365

Then
C.L.p = (1.0765 = 0.0305)/0.9994
= 1.046 to 1.107
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